ФНЦ ФНЦ ИМ. В.М. ГОРБАТОВА РАН ВНИИ ХОЛОДИЛЬНОЙ ВНИИ ХОЛОДИЛЬНОЙ Аса

All-Russian Scientific Research Institute of Refrigeration Industry branch of "V.M. Gorbatov Federal Research Center for Food Systems" of Russian Academy of Science

* Investigation of heat and mass transfer processes during film flow around ice surfaces with a phase transition to create a new generation of ice banks

> Authors: Goncharova G.Yu., Pytchenko V.P., Borzov S.S., Borschev G.V. Speaker: Borschev G.V.

1.Relevance

Cooling of food processing facilities with a high degree of uneven heat load distribution

2.Purpose of Research

Studying the processes of heat and mass transfer during film flow around ice structures with a phase transition to create heat exchangers of a new generation with a high efficiency of heat removal, coupled with the graph of the current heat load is the purpose of research.

3.Advantages of film melting

4.Results of the literature review

Data obtained in the study of horizontally separated flow around coaxially located cylindrical ice surfaces.

5.Scheme of the experimental stand

Scheme of the experimental stand: 1 - Compressor-condensing unit, 2 - Ice bank,
3 - Storage tank, 4 - Pump with frequency changer, 5 – Mass flow meter, 6 - Heater, 7 - Measuring tank, 8 - Filter, 9 - Manometer, 10 - Electronic thermometer, 11 - Regulating valve, 12 - Nozzles, 13 – Data recorder, 14 - Submersible pump, 15 – Shut-off valve, 16 - Flush valve

6. Experimental stand

Film heat exchanger with flat coils (PTA): a) water distribution during irrigation of one section; b) a threesection heat exchanger with water supply through nozzles: pos. 1 - slotted water distributor

Coaxial film heat exchanger

It is necessary to determine: -Discharged heat Load Q

- Heat transfer coefficient α

The study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of scientific project No. 20-08-00120

7.Discharged heat load

Diagrams of heat load distribution between pipes of one FHE section $S=0,078 \text{ m}^2$.

Range of change of operating parameters

Parameter	Regulation
	range
Water inlet temperature	from 20 °C to 60°C
Flow rate of water	from 3,2 kg/min to 9,6 kg/min
Density of irrigation	from 0,5*10 ⁻⁴ m ² /s to 1,5*10 ⁻⁴ m ² /s

8.Efficiency of heat transfer

Dependency of the heat transfer coefficient on the density of irrigation

9.Conclusion

The advantage of the film ice bank has been experimentally proven with respect to the volumetric ice bank:

- the ability to cool water from a temperature of 60 ° C to 1 ° C in one pass;
- an experimental dependency of the heat transfer coefficient for a film ice bank on the irrigation density has been obtained.

In the investigated range, the values of the heat transfer coefficient are ~22000 W/(m^{2*o}C) reduced to the surface of the heat exchanger and ~7000 W/(m^{2*o}C) in relation to the melting surface, and in ice banks with volumetric melting do not exceed 300 - 500 W/(m^{2*o}C).

Specific heat load of FHE reaches $320\ 000\ W/m^2$, significantly exceeding the same value for plate heat exchangers, which, according to open sources is from 12 000 to $65\ 000\ W/m^2$

Fields of application:
-Dairy industry
-Brewing industry
-Air conditioning
-Emergency and abnormal surges in thermal load
-Cooling of systems with a pulsed heat sources (cooling of lasers, etc.)

Thank you for your attention!

Additional materials

Use of the natural cold of outside air