

III International Scientific Conference "Sustainable and efficient use ГАЛАХИМ of energy, water and natural resources – SEWAN-2021"

Research of the efficiency of a heat storage system based on substances with a phase change materials for space technology

Authors: Maria Volkovich, Victoria Zaharova, Vladimir Korablev

Affiliations: ITMO University, Saint Petersburg

Saint-Petersburg, April 19-24, 2021

III International Scientific Conference on "Sustainable and Efficient Use of Energy, Water and Natural Resources" Research of the efficiency of a heat storage system based on substances with a phase change materials for space technology

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Research Objective: Development of an energy-saving heat storage system for thermal stabilization of devices in the space environment

Relevance of the problem:

Continuous growth of energy consumption

Increasing the efficiency of energy consumption is possible by reducing the energy intensity of the technologies used, using alternative, renewable energy sources, equalizing the time differences between the produced and consumed energy due to accumulation.

Research of the efficiency of a heat storage system based on substances with a phase change materials for space

technology

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Introduction

Application of thermal energy storage using organic substances with high latent heat of melting

 Decrease of weight and size characteristics

FIGURE 1. Influence of external heat flows on the space devices

Research of the efficiency of a heat storage system based on substances with a phase change materials for space

technology

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Thermal model

 r_m , [m] - average radius of the position of the phase boundary

 r_c , [m] - inner radius of the shell

FIGURE 2. Thermal model of accumulator with phase change materials

Research of the efficiency of a heat storage system based on substances with a phase change materials for space technology

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev

Affiliations: ITMO University, Saint Petersburg

Mathematical model

(1)

Keywords: Energy efficiency, heat storage, phase change materials, space devices

$$k_{ef} = \begin{cases} k_{ef}, Pr < 1000\\ 0,18 * k_f * (Gr * Pr)^{0,25} \end{cases}$$

$$Gr = b_m * g(r_c - r_m(t))^3 * \frac{T_c - T_m}{\vartheta^2}$$
⁽²⁾

$$R(t) = \frac{1}{2\pi k_{ef}} \ln \frac{r_m(t)}{r_c}$$
(3)

$$\frac{dr_m(t)}{dt} = \frac{T_c(t) - T_m}{R(t)} * \frac{1}{\rho_f * A_m(t) [L + c_f(T_c(t) - T_m)]}$$
(4)

$$C_{s}\frac{dT_{c}(t)}{dt} = \frac{T_{c}(t) - T_{m}}{R(t)} + \sigma(T_{a}(t) - T_{c}(t))$$
(5)

$$\frac{dT_a(t)}{dt} = \frac{(Q_h - \frac{T_c(t) - T_m}{R(t)}) * h_s - \alpha_s * A_s * l_s * (T_a - T_{a0})}{(C_f * \rho_f * V_f)}$$
(6)

Research of the efficiency of a heat storage system based on substances with a phase change materials for space

technology

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Experimental stand

FIGURE 3. Experimental stand:

1 – Heat accumulator; 2 - device for measuring and controlling temperature; 3heater; 4-expansion tank; 5-pump; 6-power supply

Research of the efficiency of a heat storage system based on substances with a phase change materials for space

technology

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Design of accumulator

FIGURE 4. The design of the thermal energy storage: 1 – melting substance, 2 - body, 3 - tubes, 4 - input collector, 5 output collector.

Research of the efficiency of a heat storage system based on substances with a phase change materials for space technology

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Keywords: Energy efficiency, heat storage, phase change materials, space devices

FIGURE 5. Heater

FIGURE 6. Expansion tank and pump

Research of the efficiency of a heat storage system based on substances with a phase change materials for space

technology

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Characteristics of the phase change material

Characteristic (C ₁₈ H ₃₆ O ₂₎	Value
Temperature of phase transition	69,3°C
Heat of melting	192,1 kJ/kg
Liquid phase density	847 kg/m ³
Thermal conductivity of the liquid phase	0,166 W/m*K

TABLE 1. Characteristics of the stearic acid

Research of the efficiency of a heat storage system based on substances with a phase change materials for space technology

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Radiator

FIGURE 7. Inclusion of the radiator in the circuit

FIGURE 8. Radiator view

Research of the efficiency of a heat storage system based on substances with a phase change materials for space

technology

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

GRAPH 1. Testing of the experimental stand

- t1 temperature of the heat carrier at the outlet of the heater;
- t2 the temperature of the heat carrier at the outlet of the accumulator;
- t3 the temperature of the heat carrier at the pump outlet.

Research of the efficiency of a heat storage system based on substances with a phase change materials for space

technology

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Connecting the radiator to the circuit

GRAPH 2. Connecting the radiator to the circuit

- t1 temperature of accumulator;
- t2 temperature of radiator;
- t3 temperature of environment

Research of the efficiency of a heat storage system based on substances with a phase change materials for space

technology

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Results of numerical calculations

13

Research of the efficiency of a heat storage system based on substances with a phase change materials for space

technology

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Results of numerical calculations

GRAPH 5. Increments of the radius of the molten substance

POLYTECHNIC

Research of the efficiency of a heat storage system based on substances with a phase change materials for space technology

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Conclusions

- > The paper presents an improved technique (thermal and mathematical model) for numerical
- calculations of solid-liquid phase transitions;
- The paper presents the design of a heat storage system for thermal stabilization of a space device;
- > The numerical implementation of the mathematical model is carried out in the Scilab package;
- The proposed method of using substances with a phase transition can be used as a means of ensuring the thermal regime of devices operating in difficult external conditions.

References

- Nazir H., Batool M., Bolivar Osorio F.J., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannanai A.M. // International journal of Heat Mass Transfer. 2019. Vol. 129. P. 491-523.
- Zeinelabdein, R., Omer, S., Gan, G., 2018. // Renewable and Sustainable Energy Reviews. Vol. 82. P. 2843–2868
- Baranenko A., Kuznetsov P., Zakharov V., Tsoi, A. // Scientific and technical journal of information technologies, mechanics and optics. 2018. Vol. 18. - No. 6. P. 990-1000.

TOMSK POLYTECHNIC UNIVERSITY

Research of the efficiency of a heat storage system based on substances with a phase change materials for space technology

Names: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affilations: ITMO University, Saint Petersburg

Keywords: Energy efficiency, heat storage, phase change materials, space devices

Thank you for your attention!

Authors: Maria Volkovich, Victoria Zaharova, Vladimir Korablev Affiliations: ITMO University, Saint Petersburg

Contact details:meri.volkovich@mail.ru