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Objective

» This makes the development of accurate river oil pollution model an
extremely valuable research activity.

» There are various types of river oil pollution models: statistical, empirical,
semi-empirical and physics-based.

» The objective of this paper is to develop and validate a fully physical
Computational Fluid Dynamics (CFD) model of river oil pollution, which is
advanced and pragmatic.




Modeling Approach - Geometry

» Figure 1 shows the 3D domain containing the river flow region and a source
of pollution. The specific sizes of domain, river speed and parameters of
pollution source vary in various cases.
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Figure 1. Computational Domain (river, flow direction, and source of
pollution)



Modeling Approach - Equations

» The fluid phase governing equations are written in a general form:

—(p(I))—I—i[pu(I) I, aq)jzsq) (1)

OX OX.

= Here, tis the time; X; Is the spacial coordinate (=1, 2, 3); p is the fluid mixture density;
u.1s the velocity component In X; direction and the specific expressions for dependent
ariable, &, diffusive exchange coeff|0|ent [, and source term, S, are given in
Table 1 below.

= The fluid density is calculated from the equatlon of state for mixture of fluid:
p = pRT Z an =]

where p is the pressure; T is the absolute gas temperature; R is the universal gas
constant; c, is the mass fraction of « - species of gas mixture; index « = 1,2 where 1
corresponds to oil, 2 - to all other components of fluid mixture; M, is the molecular
weight of a -component of fluid phase.




Modeling Approach Continues

Table 1. Dependent variables, effective exchange coefficients and source terms in equation (1)

Conservation of @ I's Ss
Mass | 0 m
X;— momentum u; Ut Vi p
= +pgz
Ox,
Enthalpy h U M
e + e
Pr Pr
Mass of a — species i u U
Sc¢  Sc,
Turbulent kinetic energy k U, pP, +W, —¢)
+ B, 25
H 7,
Dissipation rate of turbulent kinetic ¢ £ .
P /~'+£t‘ p;(cslpk —~Cne+C W = Ry )

energy




Modeling Approach Continues

Here, h is the gas enthalpy; k is the turbulent kinetic energy;

¢ Is the dissipation rate of turbulent kinetic energy;
u and g, are the dynamic molecular and turbulent viscosities calculated from equations:

lu _ 147910_61-15 ;ut — Cﬂ,Okz /(C,‘
(T +116.275) °

Pr, Sc, Pr, and Sc, are the molecular and turbulent Prandtl and Schmidt numbers;
6, 6,, C,, C,, C,, C,; are the empirical constants of turbulent model;

0; is the gravity acceleration component (g = (0,0,—9));
U - the gas velocity vector having three velocities components u,,u,,u, ;
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ig. 2. C1 distribution at different times (in the x1x3 plane)
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Fig. 3. The distribution of C1 on the surface of the water at different moments of time
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Fig. 4. The distribution of the velocity field at different moments of time
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Fig. 5. The distribution of the concentration of C,; at a flow rate of 1 m/s
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ig. 6. The distribution of the concentration of C, at a temperature of oil 20°C
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Fig. 7. The distribution of the concentration of C, by increasing the opening of the fistula
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Figure 8. Propagation of oil concentration in the xix3 plane
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\\ Figure 9. Isosurface of oil concentration propagation
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\\ Figure 10. Propagation of oil concentration on the surface of the water
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\\ Figure 11. Velocity vector field and concentration of pollution in the xi1x2 plane



Conclusions

= A fully physical multiphase model of CFD for oil pollution in river has
been developed.

=» The model accounts for main the important physical processes:
exchange of mass, momentum and energy between two fluids,
turbulent fluid flow and convective and conductive heat transfer.

= The model was validated at various river speeds of flow.

= The calculations let to get the space distribution of oil pollution for different
parameters of source of pollution and river.




Future Work

Further model development by improving chemical sub-model
Sensitivity studies with various models of turbulence and chemical kinetics
Testing the model for complex geometries

Seeking a collaboration with universities/organizations/companies interested
In developing and applying the advanced and pragmatic physical models of
wildfire behavior. Inquiries are to be sent to perminov@tpu.ru .

http://portal.tpu.ru/SHARED/p/PERMINOV/eng
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