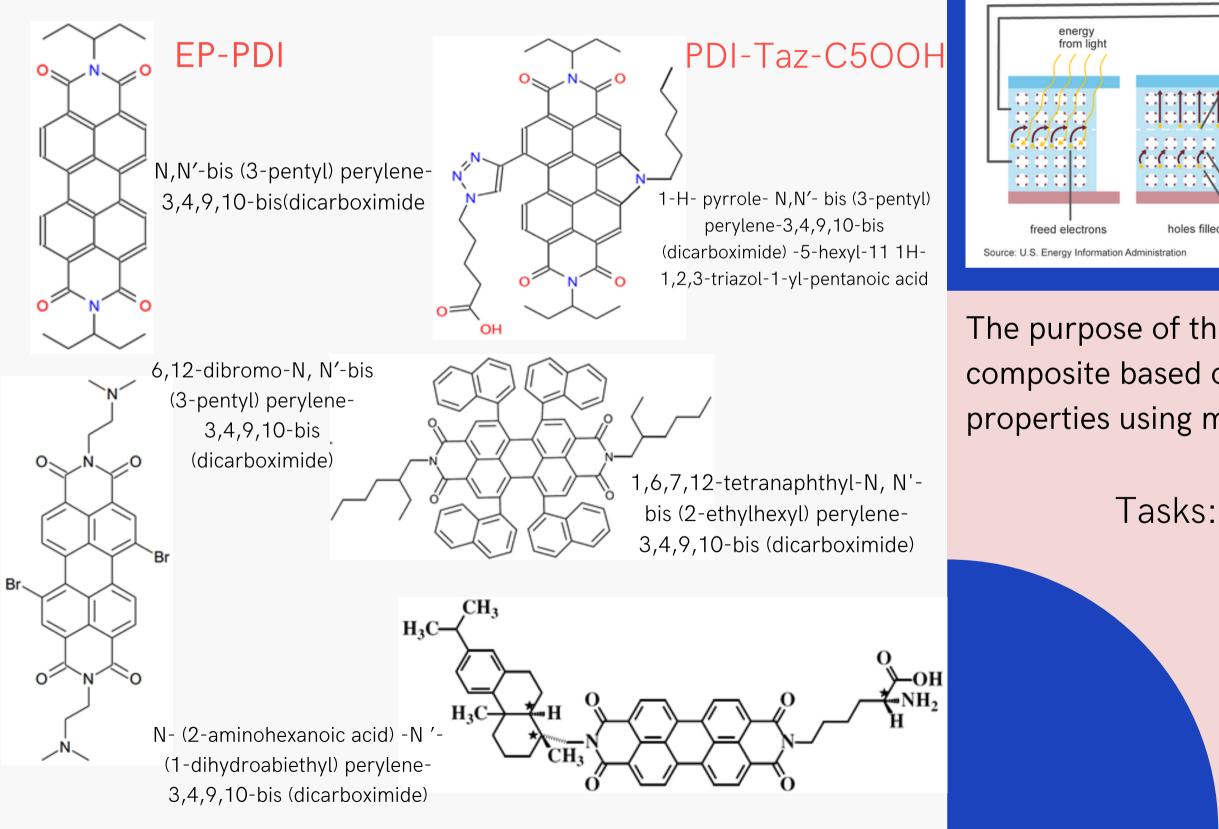
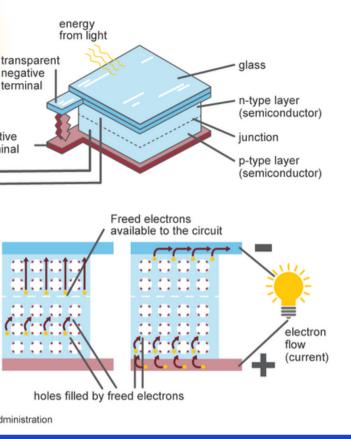


Surgut State University

MOLECULAR-IMPRINTED COMPOSITE MATERIALS WITH IMPROVED OPTICAL **PROPERTIES FOR PHOTOVOLTAIC CELLS**


YU.YU. PETROVA, E.V. BULATOVA

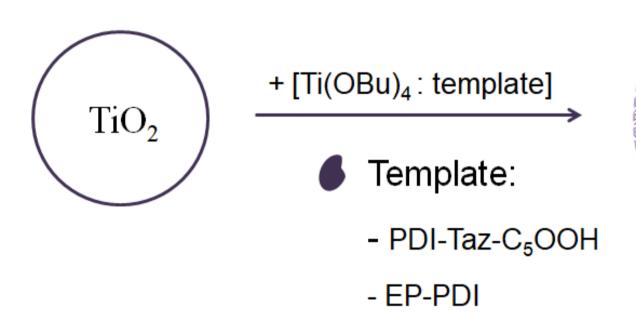
22 April 2021

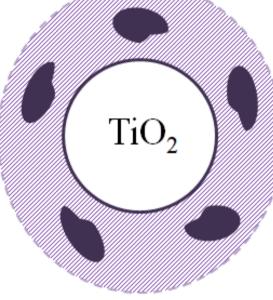


Perylenediimide (PDI) dyes acceptors of organic semiconductor systems

Inside a photovoltaic cell

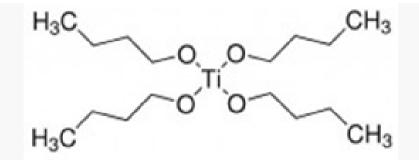
positive




Dye Sensitized Solar Cell (DSSC) Materials: PDI-TiO2 nanoPts

The purpose of this work is to create an organo-mineral composite based on TiO2 nanoparticles with semiconductor properties using molecular imprinting technology.

1.Production of polymer films by molecular imprinting on the surface of TiO2 nanoparticles; using an organic semiconductor as a template;
2.Characterization of the composite by a complex of physical methods;
3.Study of optical and sorption properties of molecular-imprinted composites.


Sol-gel method in surface molecular imprinting using nanoparticles TiO2

Hydrolysis scheme of titanium *t*-butoxide in sol-gel process

 $Ti-(OBu)_4 + 2H_2O \rightarrow TiO_2 + 4Bu-OH$

Surface Molecular Imprinting Technique

Preparation of TiO₂ nanoparticle suspension in toluene

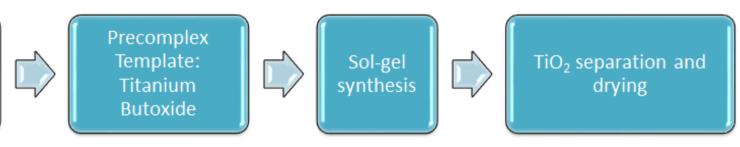
Conditic

Activated T

PDI, m

Titanium buto

(mmo


The ratio of te

titanium but

Temperature (d

The output of th

nanopowder, <25 nm particle size, 99.7% trace metals basis

Sol-gel synthesis								
PD	l-Taz-C₅OC	EP- PDI						
I.	П	III	I	П				
500	250	273	273	250				
9.3	9.3	11.5	7.3	6.2				
79 (0.23)	400 (1.17)	400 (1.17)	400 (1.17)	400 (1.17)				
1:20	1:100	1:81	1:85	1:100				
80	80	110	110	80				
NIP - 92 MIP - 96	NIP - 94 MIP - 97	NIP - 92 MIP - 96	NIP - 86 MIP - 83	NIP - 87 MIP -92				
	I 500 9.3 79 (0.23) 1:20 80 NIP - 92	PDI-Taz-C₅OC I II 500 250 9.3 9.3 9.3 9.3 79 400 (0.23) (1.17) 1:20 1:100 80 80 NIP - 92 NIP - 94	PDI-Taz-C5OOH I II III 500 250 273 9.3 9.3 11.5 79 400 400 (0.23) (1.17) (1.17) 1:20 1:100 1:81 80 80 110 NIP - 92 NIP - 94 NIP - 92	PDI-Taz-C50OH EP- I II III I 500 250 273 273 9.3 9.3 11.5 7.3 9.3 9.3 11.5 7.3 79 400 400 400 (0.23) (1.17) (1.17) (1.17) 1:20 1:100 1:81 1:85 80 80 110 110 NIP - 92 NIP - 94 NIP - 92 NIP - 86				

Titanium(IV) oxide, anatase

PDI-TiO2 composite characterization

Laser diffraction

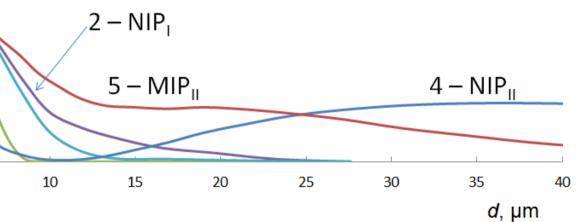
FTIR spectroscopy

SALD-2300, Shimadzu Spectrum 100 Series, Perkin Elmer Mettler Toledo TGA/DSC 3+ Star System

Diffuse reflectance spectroscopy

UV-Vis spectroscopy

Shimadzu UV-2600

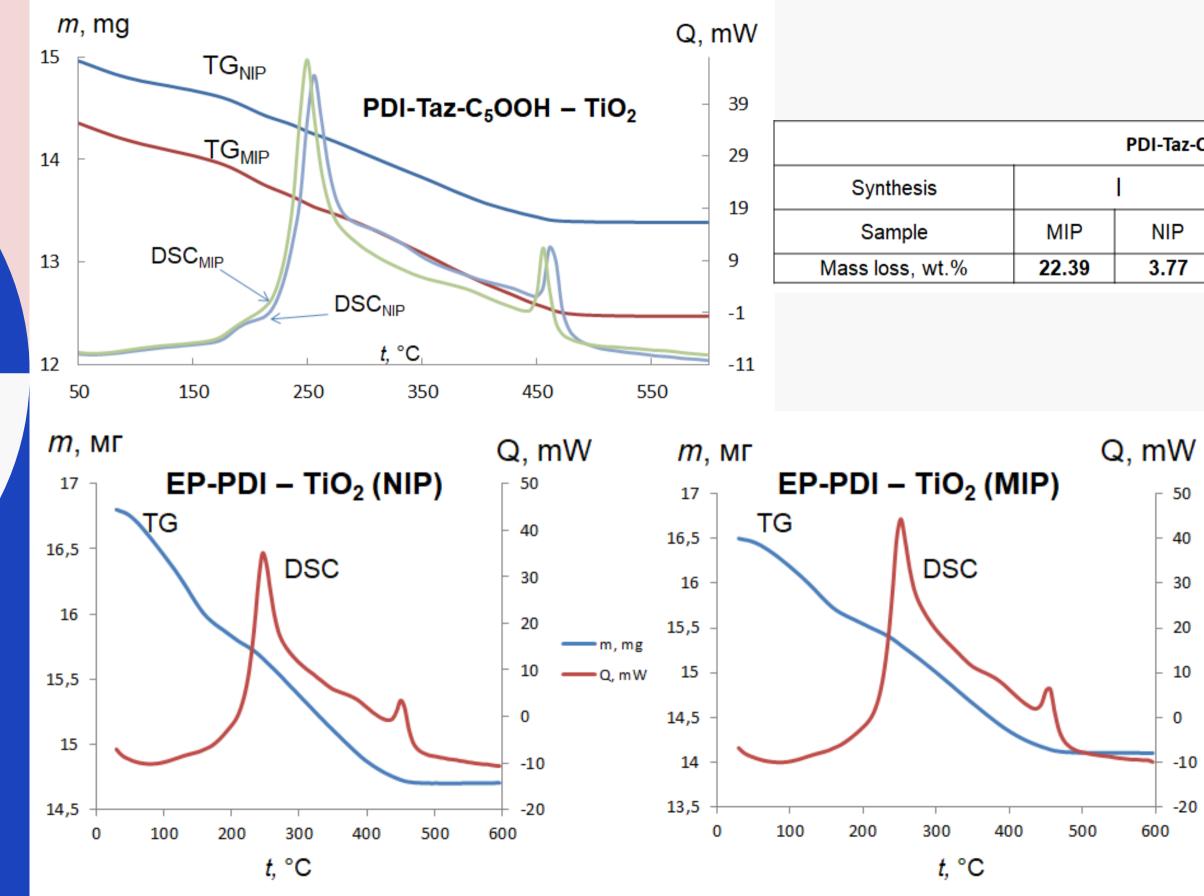


• Laser diffraction method

	Average diameter, μm	Modal diameter, μm	Median diameter, μm	Sample
ے۔ Laser di	2.50	2.83	2.65	TiO ₂
<i>q</i> , %		PDI-Taz-C₅OOH)	I (F	
14 - $1 - Ti$	1.93	2.23	2.10	MIP
12 -	1.81	3.56	1.98	NIP
10 - 3		PDI-Taz-C₅OOH)	II (I	
8 -	4.59	4.56	4.65	MIP
6 -	2.57	0.68	1.41	NIP
4		PDI-Taz-C₅OOH)	III (
2	1.16	1.39	1.14	MIP
	0.87	0.54	0.79	NIP
0 5		l (EP- PDI)		
Graphs o	3.22	5.79	3.79	MIP
	3.63	5.79	3.51	NIP
particle d		II (EP- PDI)		
1 -TiO2; 2 4 - NIP (II s	8.89	19.02	13.00	MIP
	6.01	19.02	6.50	NIP

diffraction method (PDI-Taz-C₅OOH – TiO₂; I-II synthesis) TiO₂

3 – MIP


of volume distribution (q,%) on diameter:

2 - NIP (I synthesis); 3 - MIP (I synthesis); synthesis); 5 - MIP (II synthesis)

FTIR spectra of MIP (2) and NIP (1) samples after PDI – TiO_2 (I synthesis)

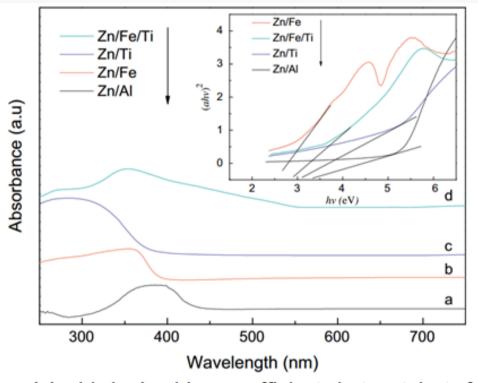
TGA & DSC method (oxidizing environment, 10° C/min)

PDI-Taz-C ₅ OOH – TiO ₂										
			I		III					
	MIP	NIP	MIP	NIP	MIP	NIP				
%	22.39	3.77	13.36	10.75	13.10	11.91				

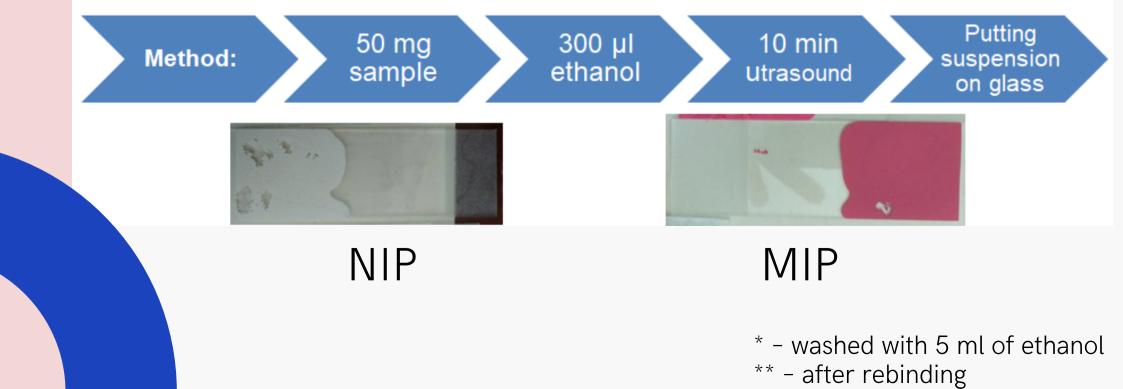
Synthesis	EP-PDI	– TiO ₂ (I)
Sample	MIP	NIP
Mass loss, wt. %	14.53	12.47

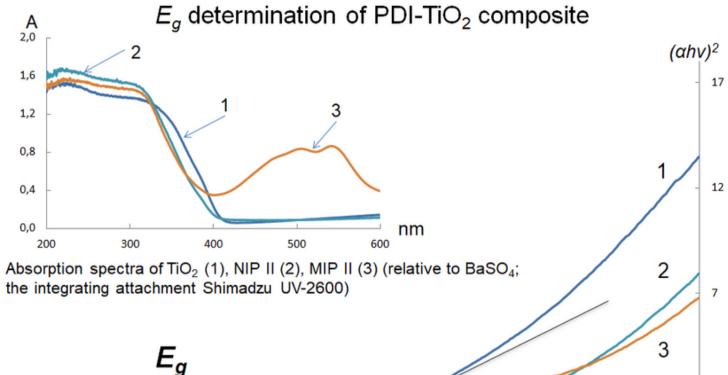
Diffuse reflectance spectroscopy for determining the band gap energy (Eg, eV)

$$\alpha h v = K \cdot (h v - E_g)^{n/2} \tag{1}$$


$$(\alpha h v)^2 = K^2 \cdot (h v - E_g) \tag{2}$$

$$K^{2} \cdot E_{g} = K^{2} \cdot hv$$
, (αhv)² = 0 (3)


$$E_g = hv \tag{4}$$


where α , *h*, *v* and *K* are the absorption coefficient, Planck constant, light frequency, proportionality constant, respectively. n = 1 (is for a directly allowed transition).

8

* Xia S.-J., Liu F.-X., Ni Z.-M.. Xue J.-L., Qian P.-P. Layered double hydroxides as efficient photocatalysts for visible-light degradation of Rhodamine B / S.-J. Xia. F.-X. Liu. Z.-M. Ni. J.-L. Xue. P.-P. Qian // J. Colloid Interface Sci. – 2013. –V. 405. – P. 195–200.

hv, *3B* 2,80 2,90 3,00 3,10 3,20 3,30 3,40 3,50

Graphs of	$(\alpha hv)^2 = f(hv)$	for TiO ₂ (1), NIP (2),	MIP (3)
-----------	-------------------------	-------------------------	-------------	---------

Sample	Precursor: template	<i>E</i> g, eV	±δ, eV (n=3, P = 0.95)	Δ λ, nm					
TiO ₂		3.110	0.006						
EP- PDI (I)									
NIP	1:85	3.109	0.007	0.64					
MIP	1.05	3.076	0.011	4.39					
	EP- PDI (II)								
NIP	1:100	3.155	0.008	-					
MIP	1.100	3.109	0.005	5.82					
	PDI-Taz-	C₅OOH (III)						
NIP		2.976	0.049	15.8					
MIP	1:81	2.886	0.104	28.9					
MIP*	1.01	2.624	0.157	71.7					
MIP**		2.847	0.016	34.6					

Adsorption properties of NIP and MIP PDI-TiO2 nanoparticles

	Rebind	ling 1	Rebindi	ing 2	Rebind	ling 3				Templat removing conditions:
Sample	$q_{\rm max} \cdot 10^7$, mol/g	Time, <i>t</i>	q _{max} ·10 ⁷ , mol/g	Time, <i>t</i>	q _{max} ·10 ⁷ , mol/g	Time, <i>t</i>	IF ₁ (max)	IF ₂ (max)	IF ₃ (max)	1) acetic acid: ethanol (96.5%) 1: 9, 1 day in a dark place, centrifugation and drying
	PDI-Taz-C₅OOH (I)								until 40 °C.	
MIP	5.7	24 h	6.2	48 h	4.19	3 h	1.15	0.92	7.94	2) calcination at 400°C for 1 h
NIP	5.0	2 h	6.7	48 h	4.57	4 h	1.15	0.92	1.94	
			PDI-T	az-C₅OO	/H (II)				· · · · · · · · · · · · · · · · · · ·	
MIP	7.0	48 h	7.5	48 h	18.6	24 h	0.40	2.24	4.2	
NIP	21.7	5 min	4.1	48 h	10.2	8 h	0.40	2.24	4.2	Statical sorption conditions:
			PDI-T	az-C₅OOI	H (III)					1) 100 mg of MIP and NIP samples into
MIP	1.6	10 min	5.7	24 h	0.437	3.5 h	0.09	1.15	0.08	$50 \text{ mL } 2.0 \mu\text{mol/L }PD\text{I}.$
NIP	22	5 min	4.9	24 h	14	4 h	0.09	1.15	0.00	2) 3 ml aliquote through 5-10 min was
	EPI-PDI (I)									centrifuged and measured at 522 nm (for
MIP*			17.8	24 h			<u> </u>	1.13		6-24 h).
NIP*			15.7	24 h				1.13		
*-after cal	lcination at	400°C		,						•

arter calcination at 400 C

Pseudo-first order kinetics:

$$\lg(q_e - q_t) = \lg q_e - \frac{k_1}{2,303}t$$

Pseudo-second order kinetics:

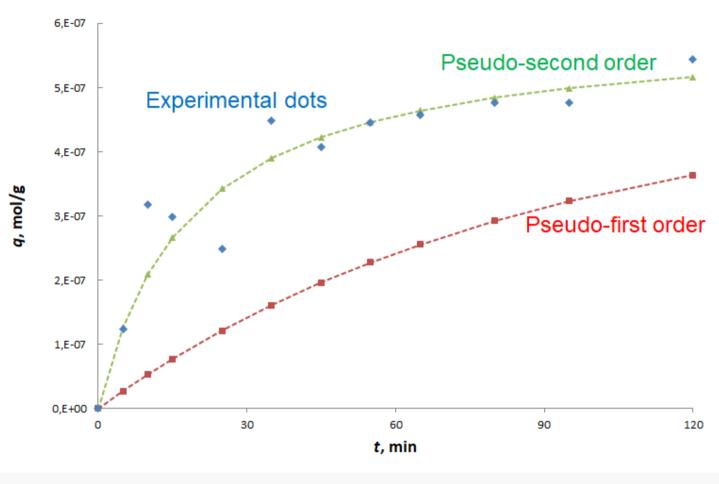
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
$$IF = \frac{q_{\text{MUII}}}{q_{\text{HUII}}} \quad q_t = \frac{(c_0 - c_t) * V}{m}$$

 q_t – sorption capacity, mol / g;

 C_0 – initial concentration PDI-Taz-C₅OOH, M (2·10⁻⁶);

 C_t – concentration PDI-Taz-C₅OOH in the moment

of time t, M;

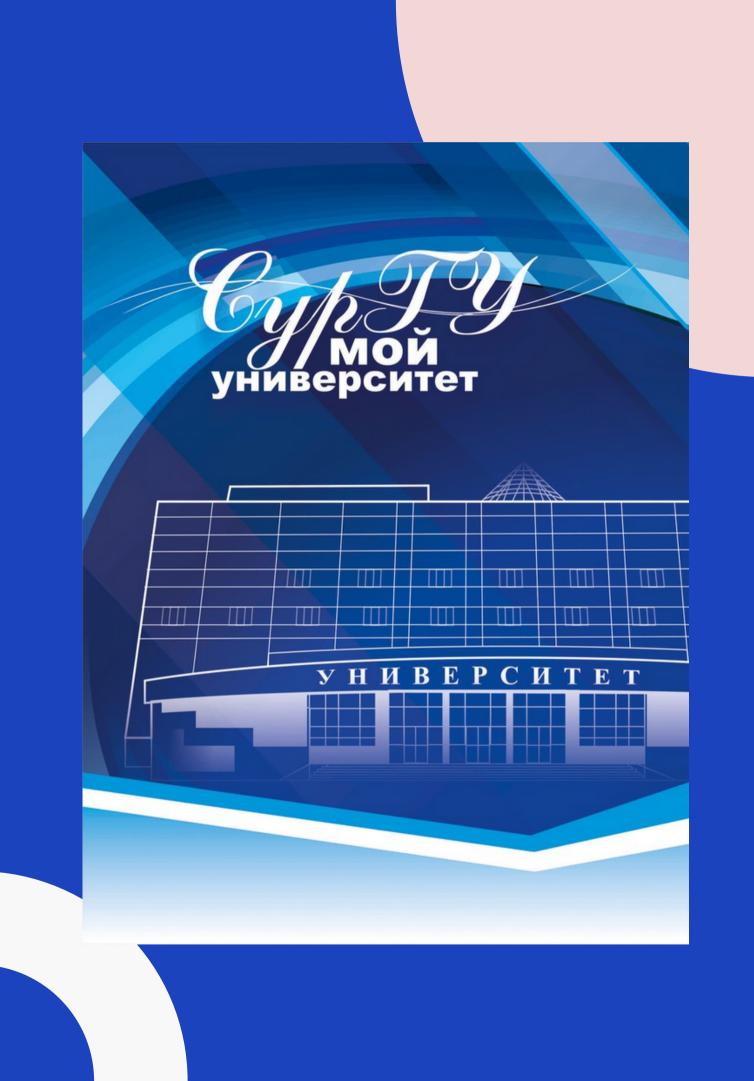

V – volume of solution PDI-Taz-C₅OOH, I;

m – sample weight, g; *IF* – imprinting factor

Rebinding kinetics of PDI-Taz-C500H – TiO2 samples

	3 rd Rebinding									
Sample	Pse	eudo-first orde	r	Pseudo-second order						
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		R ²	k₂, g·mol⁻¹·min⁻¹	q _e ∙10 ⁷ , mol/g	R ²				
	Synthesis I									
MIP	1,3·10-₃	2.2	0.715	2,9 ·10⁵	3.0	0.828				
NIP	3,6·10 ⁻³	8.5 0.881		2,4·10³	11.2	0.822				
			Synthes	sis II						
MIP	2,2·10-₃	17.7	0.916	2,8·10³	16.9	0.901				
NIP	3,1·10-₃	11.5	0.797	4,0·10 ³	9.3	0.840				
Synthesis III										
MIP	7,1·10 ⁻⁴	0.3	0,542	5,0·10⁵	0,4	0,877				
NIP	4,7·10 ⁻³	2.5	0.931	1,6·10³	28.3	0.929				

MIP PDI-Taz-C₅OOH – TiO₂



10

Findings:

- An organo-mineral composite PDI-TiO₂ was obtained by surface molecular imprinting using sol-gel technique;
- Characterization of the samples by **FTIR** showed the presence of template molecules (PDI-Taz- $C_5OOH \& EP-PDI$) and the precursor of the sol-gel synthesis. By laser diffraction an increase in the MIP particle size compared with the NIP were shown. The **TGA&DSC** showed the mass loss MIP PDI-TiO₂ samples more than 13% and two-stage process of thermal oxidation at 250 and 450°C.
- The optical properties of MIP PDI-Taz-C₅OOH -TiO₂ were studied: a decrease in the band gap ($\Delta E_a = 0.47 \text{ eV}$) and an adsorption length shift in the visible spectral region ($\Delta\lambda = 72 \text{ nm}$) was shown. The adsorption kinetics of rebinding follows the pseudo-second order. The sorption capacity after template removal with ethanol has reached 0.75 µmol/g PDI-Taz-C₅OOH, and after calcination at 400°C - 1.8 µmol/g EP-PDI.
- The effectiveness of molecular imprinting and the possibility of the presence of molecular imprints of perylenediimide dye in the films on the surface of TiO₂ nanoparticles are shown: molecular imprinted (MIP) material can rebind 2 times more PDI-Taz- C_5 OOH than unimprinted (NIP).

Yuliya Petrova

Institute of Natural & Technical Sciences Director

Surgut State University

⁽⁽))</sup>+7 (3462) 76 30 91

PETROVA_JUJU@SURGU.RU