

POLYTECHNIC

III International Scientific Conference "Sustainable and efficient use ГАЛАХИМ of energy, water and natural resources – SEWAN-2021"

Improving the water resistance of phenolformaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Valeeva Aigul, Valiullina Almira, Grachev Andrey, Zabelkin Sergey, Bicbulatova Guzelia

Kazan National Research Technological University

Saint-Petersburg, April 19-24, 2021

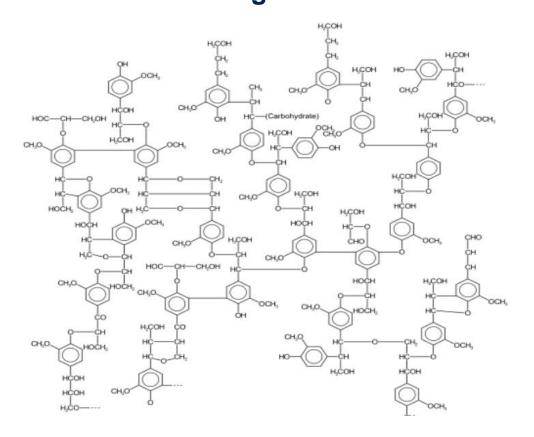
Title

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution . Biophenol . Water resistance coefficient

According to some researchers, about 35.5 million m3 of wood waste is generated annually in the Russian Federation.

These waste lignocellulosic biomass can serve as a source of energy and chemical components.


Title

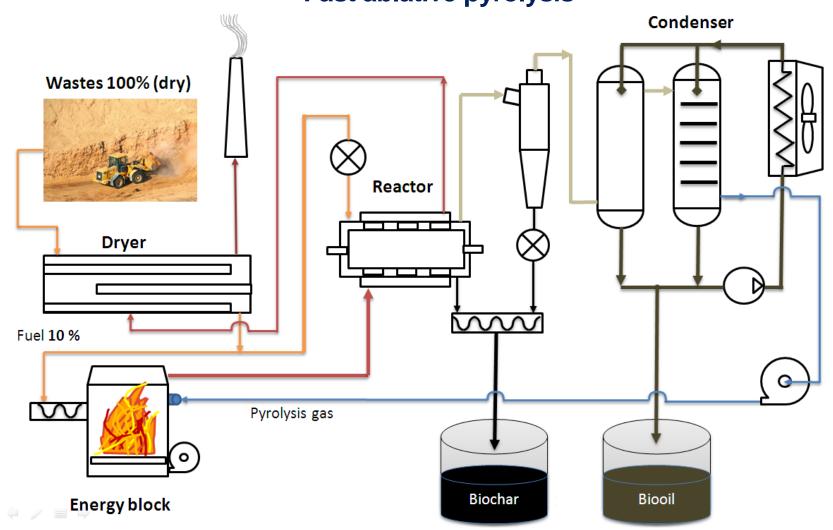
Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution .Biophenol . Water resistance coefficient

Phenol in plants

An example of a possible structure of lignin

Phenolic compounds are produced by plants and microorganisms, and during growth they accumulate in cell vacuoles or polymerize into lignin.



томѕк

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution .Biophenol . Water resistance coefficient

Fast ablative pyrolysis

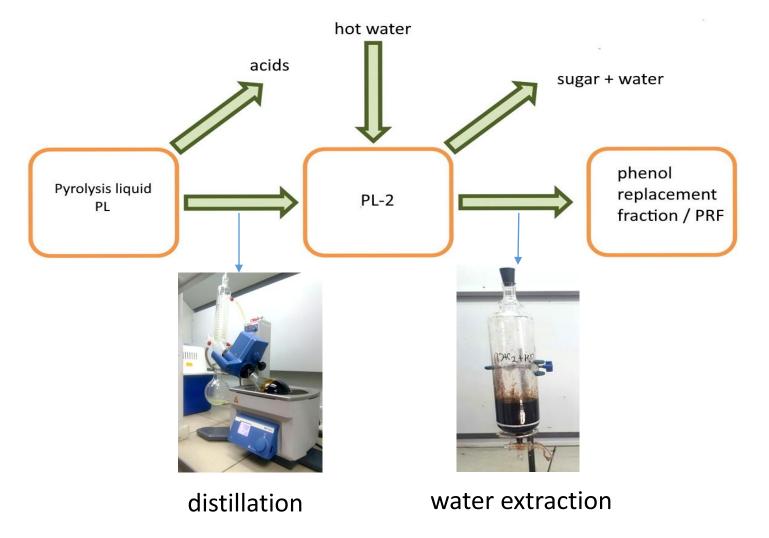
TOMSK POLYTECHNIC UNIVERSITY

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution .Biophenol . Water resistance coefficient

Yield of pyrolysis products at the FPP02 production complex, %			
1. Charcoal	22		
2. Pyrolysis liquid	56		
3. Gas	22		

1


TOMSK POLYTECHNIC UNIVERSITY

Title

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution . Biophenol . Water resistance coefficient

Separation of the phenol-substituting fraction

TOMSK

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution .Biophenol . Water resistance coefficient

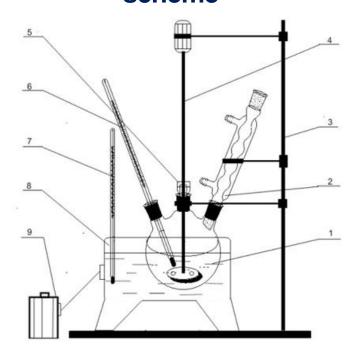
Yield of fractionation products (PL-2, PRF) from the pyrolysis liquid

Yield, %	Pyrolysis liquid (100%)
Condensate obtained during distillation	55,08
PL-2	40,43
PRF	14,77

Yield of the phenol replacement fraction (PRF) from dry wood

Yield, %	Weight of absolutely dry wood (100%)
PRF	8,27

TOMSK POLYTECHNIC



Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution . Biophenol . Water resistance coefficient

Laboratory plant for the synthesis of phenol-formaldehyde resins: photo scheme

Resin with PRF

1 - three-necked flask; 2 - reflux condenser; 3 - tripod; 4 mechanical mixer; 5 - shutter; 6.7 - thermometer; 8 - water bath; 9 - thermostat томѕк

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution .Biophenol . Water resistance coefficient

	Modified resin with	Control resin without
color		
smell	Distinct smoke odor characteristic of pyrolysis liquid	Weak, sweet taste
consistency	Heterogeneous with small inclusions	Homogeneous

TOMSK POLYTECHNIC

UNIVERSITY

•

Title

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution .Biophenol . Water resistance coefficient

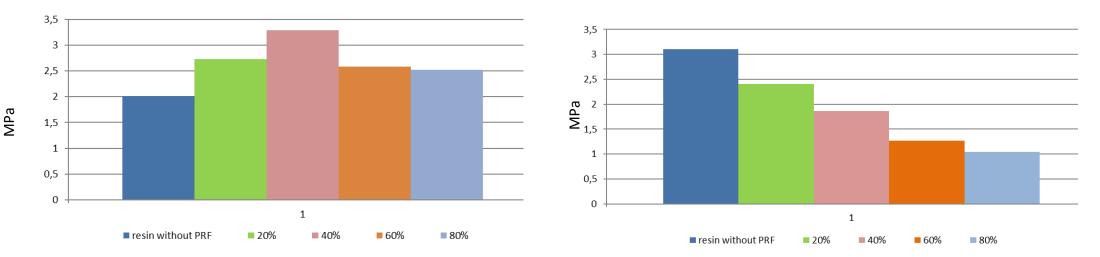
Samples for testing shear strength

Before the break

After the break

TOMSK

Title


Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution .Biophenol . Water resistance coefficient

Dependence of the resin strength on the degree of substitution of phenol with pyrolysis liquid

after boiling

Percentage of substitution of synthetic phenol by phenol replacement fraction (PRF)

Percentage of substitution of synthetic phenol by phenol replacement fraction (PRF)

The ultimate strength when chipping on the adhesive layer according to the state standard 20907-2016 is not less than 1.47 MPa

TOMSK

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution . Biophenol . Water resistance coefficient

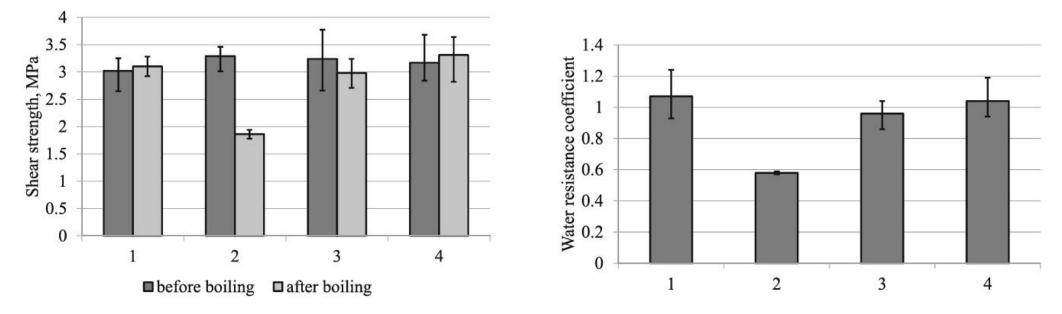
Treatment of modified resin with PRF solvents

Two solvents were used for extraction: benzene and n-hexane

Stirring for 1 hour

Settling in the dividing funnel for 3 hours

benzene


hexane

Title

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution .Biophenol . Water resistance coefficient

Shear strength before and after boiling and water resistance coefficients

1-control resin without PRF, 2-resin modified with PRF, 3- resin with PRF and cleaned with benzene, 4-resin with PRF and cleaned with hexane

томѕк

Title

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution . Biophenol . Water resistance coefficient

Conclusions

- The results of the study indicate a significant influence of neutral substances in the composition of liquid products of rapid pyrolysis on the quality indicators of the resol phenolformaldehyde resin.
- The release of neutral substances increased the water resistance coefficient for the resin with PRF purified hexane to 0.91 MPa, for the resin purified with benzene to 1.04 MPa.
- Benzene as an organic solvent copes more efficiently, the mass content of substances dissolved in benzene is 3.2%, in hexane 2.5%. The strength values of the resin purified with benzene remain stable before and after boiling (3.17 MPa before boiling, 3.31 MPa after boiling), and the water resistance coefficient is comparable to the water resistance coefficients of the control sample.

References

1 - Doronin Yu. G., Svitkina M. M., Miroshnichenko S. N. Synthetic resins in woodworking: handbook. M.: Forest industry, 1979. 208 p.

2 - A. R. Valeeva, A. N. Grachev, S. A. Zabelkin, V. N. Bashkirov, A. I. Sabirzyanova. Determination of the effect of the degree of substitution of phenol by liquid products of wood pyrolysis on the strength of phenol-formaldehyde resin // Woodworking industry. 2020; №16 p.88-95

3 - Zabelkin S., Valeeva A., Sabirzyanova A. et al. // Biomass Conversion and Biorefinery. 2020. DOI: 10.1007/s13399-020-01025-0

Title

Improving the water resistance of phenol-formaldehyde resin using biophenols obtained from liquid pyrolysis products of wood waste

Keywords: Phenol-formaldehyde resin . Resol resin . Wood pyrolysis . Pyrolysis liquid . Bio-oil . Phenol substitution .Biophenol . Water resistance coefficient

Thank you for your attention!

Authors: Valeeva A.R., Valiullina A. I., Grachev A.N., Zabelkin S.A., Bikbulatova G.M.

Affiliations: Kazan National Research Technological University

Contact details: samirhanova@rambler.ru