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The quantitative description of the principle of irreversibility is expressed 

by the second law of thermodynamics by introducing entropy as a measure 

of dissipation.  

The value of dissipation 𝛹̇ for a thermodynamic system overall can be de-

fined through distribution of the local dissipative function 𝛹̇𝑉over the 

whole considered volume 𝑉 (1): 

𝛹̇ = ∫ 𝛹̇𝑉𝑑𝑉
𝑉

0
= ∫ 𝑇 ∙ 𝐽𝑆

𝑉𝑑𝑉
𝑉

0
= 𝑇̅т/д ∙ 𝑆̇𝑖𝑛 ,                              (1) 

where 𝑇̅т/д is the average thermodynamic temperature, К; 𝑆̇𝑖𝑛  is the speed 

of entropy increase in the whole system under consideration as a result of 

inner irreversible processes, W/К; local production of entropy 𝐽𝑆
𝑉, W/m3· К; 

𝛹̇𝑉 is the dissipative function of the elementary volume of a system, W/m3; 

𝑇 is the absolute temperature for a heterogeneous system, К [1]. The meth-

od of dissipative functions, as an analytical tool for estimating the actual 

energy costs, allows us to combine the fundamental structural and descrip-

tive concepts of classical thermodynamics with the kinetic laws of the 

mechanism of energy and matter transfer phenomena [2]. 

 Differential equations of the balance of mass, energy, entropy and 

kinetic relations of local speeds in heat-transfer processes, substance com-

ponents and the impulse near the equilibrium, as well as the Gibbs equa-

tion, give us an analytical expression of the dissipative function in a gener-

alized form (2): 

𝛹̇𝑉 = ∑ 𝐽𝑖
𝑛
𝑖=1 ∙ 𝑋𝑖 ,                                                    (2) 

where 𝐽𝑖 is the local speed of a process, 𝑋𝑖  is the moving force. 



 As follows from the equation (2), the dissipative function 𝛹̇𝑉 equals 

the sum of the products of local speeds of the processes𝐽𝑖and their moving 

forces 𝑋𝑖 , expressed in the form that allows to receive the dimension of the 

dissipation (W/m3). In an equilibrium system intensive parameters are 

spread evenly, and as a result, relaxation processes and forces identical to 

these processes arise, i.e. 𝐽𝑖 = 0 and 𝑋𝑖 = 0. 

 In a generalized way the local speed near the equilibrium can be pre-

sented as a linear relation (3): 

𝐽𝑖 = ∑ 𝐿𝑖𝑘 ∙ 𝑋𝑘
𝑛
𝑘=1 ,                                                    (3) 

where 𝐽𝑖 is the local speed of the i-process, generally depending on all mov-

ing forces; 𝑋𝑘 , 𝐿𝑖𝑘 are phenomenological proportionality coefficients that 

can be functions of state of an object, but do not depend on moving forces 

𝑋𝑘 . 

 For non-conjugated processes the speed depends on its own moving 

force 𝑋𝑖  (4): 

𝐽𝑖 = 𝐿𝑖𝑖 ∙ 𝑋𝑖,                                                    (4) 

where 𝐿𝑖𝑖 are phenomenological proportionality coefficients connected 

with the coefficients of thermal conductivity 𝜆 and diffusion 𝐷𝑗 ofthe𝑗-

component, the viscosity of a medium 𝜇 and constants of the forward and 

backward reactions 𝑘+ и 𝑘−. 

 To obtain the analytical relation and find the numerical values of dis-

sipation, two methods can be used. The first method is based on the inte-

gration of the local dissipative function over the whole volume of the con-

sidered system. The second method lies in using integral balance equations 

of mass, energy, entropy, exergy for a fixed controlled volume of a non-

equilibrium thermodynamic system. Let us analyze both ways on a specific 

example of dissipation of convertible energy in the diffusive membrane 

process: to obtain an analytical and a numerical solution for the value of the 

local and integral dissipation of energy in the diffusive layer of the mem-

brane that divides the ideal mixture of carbohydrates of propane (compo-

nent 𝐴) and methane (component 𝐵) at a temperature 𝑇𝑓 = 279 К and pres-



sure 𝑃𝑓 = 4,6 bar in the pressure channel of the apparatus. The composi-

tion of gas mixture in the pressure channel 𝑦𝐴̃
′ = 0,59 

𝑘𝑚𝑜𝑙А

𝑘𝑚𝑜𝑙𝑜𝑓𝑚𝑖𝑥𝑡𝑢𝑟𝑒
, in the 

draincavity 𝑦𝐴̃
′′ = 𝑦𝑃̃ = 0,95 

𝑘𝑚𝑜𝑙А

𝑘𝑚𝑜𝑙 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒
. The thickness of the diffusive 

layer of the polymer membrane 𝛿 = 0,2 𝜇𝑚; working area 𝐴 = 117 𝑚2; 

the pressure in the pressure channel 𝑃′′ = 1 𝑏𝑎𝑟. The performance of the 

initial mixture is 𝑁𝐹̇ = 0,023 
𝑘𝑚𝑜𝑙

𝑐
. The gas mixture of initial composition 

𝑦𝐹̃  is injected into the pressure channel1 of the membrane apparatus at 𝑃 =

𝑃𝐹 and 𝑇𝐹, the flow 𝑁𝑝̇ that goes through the membrane 3 with the concen-

tration 𝑦𝐴̃
′′ = 𝑦𝑃̃  is let out through the drain cavity 2; the discharge flow 

𝑁𝑅̇  is let out of the pressure channel with the concentration  𝑦𝑅̃ = 𝑦𝐴0̃
′
. 

 

 

 

 

 

 

 

 

           (а)                           (b) 

Figure 1.а) The distribution and characteristics of the flows in the apparatus: 1 – pres-

sure channel;  

2 – drain channel; 3 – silicone membrane. b) The concentration profile in the membrane 

layer of the apparatus. 

 

 The process is stationary and isothermal, the gas mixture is ideal. 

The hydraulic resistance in the pressure and drain channels is negligible. 

The external diffusive resistance in the pressure and drain channels is ex-

cluded. The structure of the gas flow in the cavity of the pressure channel 1 



corresponds with the model of ideal mixing (MIM). Proceeding from these 

presuppositions: 

𝑃′ = 𝑃𝑓 = 𝑃𝑅 = 4,6 bar, where 𝑃′ is the pressure in the cavity 1; 

𝑃′′ = 𝑃𝑝 = 1 bar, where 𝑃′′ is the pressure in the cavity 2; 

𝑦𝐴̃
′ = 𝑦𝑅̃ = 0,59 

𝑘𝑚𝑜𝑙А

𝑘𝑚𝑜𝑙 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒
; 𝑦𝐴̃

′′ = 𝑦𝑅̃ = 0,95 
𝑘𝑚𝑜𝑙А

𝑘𝑚𝑜𝑙𝑜𝑓𝑚𝑖𝑥𝑡𝑢𝑟𝑒
, where 

𝑦𝐴̃
′, 𝑦𝐴̃

′′
 are compositions of the gas phase near the membrane surface on 

the side of the pressure and drain channels. The resistance to the mass 

transfer is focused on the diffusive layer of the silicone membrane 𝛿 exclu-

sively. Let us take that on the border between the gas and the membrane 

there is a local equilibrium. 

 The concentration of the components 𝐴 (𝐶𝐴,𝑀
′) and 𝐵(𝐶𝐵,𝑀

′) in the 

membrane on the border with the pressure channel equals the following 

values: 

𝐶𝐴,𝑀
′ = 𝜎𝐴,𝑀 ∙ 𝑃′ ∙ 𝑦𝐴̃

′,
𝑘𝑚𝑜𝑙 А

𝑚3  

𝐶𝐵,𝑀
′ = 𝜎𝐵,𝑀 ∙ 𝑃′ ∙ 𝑦В̃

′,
𝑘𝑚𝑜𝑙 В

𝑚3
, 

where 𝜎𝐴,𝑀 = 8,825 ∙ 10−5 𝑚𝑜𝑙

𝑚3∙𝑃𝑎
 and 𝜎𝐵,𝑀 = 1,683 ∙ 10−6 𝑚𝑜𝑙

𝑚3∙𝑃𝑎
 are values 

of the solubility coefficients of the membrane (made of polydimethylsilox-

ane [(𝐶𝐻3)2𝑆𝑖𝑂]𝑥) for both components at a temperature 𝑇 = 279 К. 

 We obtain the following values of the concentrations of components 

on the border with the membrane: 

𝐶𝐴,𝑀
′ = 8,825 ∙ 10−8  ∙ 4,6 ∙ 105 ∙ 0,59 = 23,951 ∙ 10−3

𝑘𝑚𝑜𝑙 

𝑚3  

𝐶𝐴,𝑀
′′ = 8,825 ∙ 10−8  ∙ 1 ∙ 105 ∙ 0,95 = 8,3837 ∙ 10−3

𝑘𝑚𝑜𝑙 

𝑚3  

𝐶𝐵,𝑀
′ = 1,683 ∙ 10−9  ∙ 4,6 ∙ 105 ∙ 0,41 = 0,3174 ∙ 10−3

𝑘𝑚𝑜𝑙 

𝑚3  

𝐶𝐵,𝑀
′′ = 1,683 ∙ 10−9  ∙ 1 ∙ 105 ∙ 0,05 = 0,00841 ∙ 10−3

𝑘𝑚𝑜𝑙 

𝑚3  



 The values of the diffusion flows 𝐽𝐴, 𝐽𝐵 in the membrane are defined 

based on the condition of the constant diffusion coefficients of components 

in the membrane layer. For a flat and one-dimensional task, the concentra-

tion distribution of the substance in the membrane is linear, and the concen-

tration gradients are constant. 

𝜕𝐶𝐴,𝑀

𝜕𝑥
=

𝐶𝐴,𝑀
′′ − 𝐶𝐴,𝑀

′

𝛿
=

(8,3837 − 23,951) ∙ 10−3

2 ∙ 10−7
 

𝜕𝐶𝐴,𝑀

𝜕𝑥
= −7,784 ∙ 104

𝑘𝑚𝑜𝑙 

𝑚4  

𝜕𝐶𝐵,𝑀

𝜕𝑥
=

𝐶𝐵,𝑀
′′ − 𝐶𝐵,𝑀

′

𝛿
=

(0,00841 − 0,3174) ∙ 10−3

2 ∙ 10−7
 

𝜕𝐶𝐵,𝑀

𝜕𝑥
= −0,1545 ∙ 104

𝑘𝑚𝑜𝑙 

𝑚4  

 The density values of the diffusive flows of the components: 

𝐽𝐴 = −𝐷𝐴,𝑀

𝜕𝐶𝐴,𝑀

𝜕𝑥
= −5,558 ∙ 10−10 ∙ (−7,784 ∙ 104) 

𝐽𝐴 = 4,326 ∙ 10−5
𝑘𝑚𝑜𝑙

𝑚2 ∙ 𝑠
 

𝐽В = −𝐷𝐵,𝑀

𝜕𝐶𝐵,𝑀

𝜕𝑥
= −1,433 ∙ 10−9 ∙ (−0,1545 ∙ 104) 

𝐽𝐵 = 0,2214 ∙ 10−5
𝑘𝑚𝑜𝑙

𝑚2 ∙ 𝑠
 

 The total specific flow (general density of the substance) that went 

through the separating membrane has the value: 

𝐽 = 𝐽𝐴 + 𝐽𝐵 = 4,326 ∙ 10−5 + 0,2214 ∙ 10−5 

𝐽 = 4,5474 ∙ 10−5
𝑘𝑚𝑜𝑙

𝑚2 ∙ 𝑠
 

 The general flow, taking into account the active surface of the mem-

brane, equals the value: 

𝑁𝑝̇ = ∫ 𝐽𝑑𝐴
𝐴

0

= 𝐽 ∙ 𝐴 = 4,5474 ∙ 10−5 ∙ 117 = 0,532 ∙ 10−2
𝑘𝑚𝑜𝑙

𝑠
 

 The discharge flow according to the material balance equation: 



𝑁𝑅̇ = 𝑁𝐹̇ − 𝑁𝑝̇ = 0,023 − 0,00532 = 0,01768 
𝑘𝑚𝑜𝑙

𝑠
 

 Let us check the composition of the flow that went through the diffu-

sive membrane layer: 

𝑦𝐴̃
′′ =

𝐽𝐴
𝐽

= 0,95 
𝑘𝑚𝑜𝑙 А

𝑘𝑚𝑜𝑙 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒
 

 Initial composition: 

𝑦𝐹̃ =
𝑁𝑅̇

𝑁𝐹̇

𝑦𝑅̃ +
𝑁𝑃̇

𝑁𝐹̇

𝑦𝑃̃ =
0,01768

0,023
∙ 0,59 +

0,00523

0,023
∙ 0,95

= 0,673 
𝑘𝑚𝑜𝑙 А

𝑘𝑚𝑜𝑙 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒
 

The local dissipative function in the isothermal membrane diffusion 

process is defined on the basis of the relation (5): 

𝛹̇𝑉 = 𝐽𝐴⃗⃗  ⃗ ∙ (−∆𝜇𝐴,𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) + 𝐽𝐵⃗⃗  ⃗ ∙ (−∆𝜇𝐵,𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )                                       (5) 

For ideal solutions of the component in the membrane (the activity 

coefficient equals one) under the condition of planar geometry of the mem-

brane we get:       
𝜕𝜇𝐴

𝜕𝑥
=

𝜕𝜇𝐴

𝜕𝑐𝐴,𝑀
∙
𝜕𝐶𝐴,𝑀

𝜕𝑥
, 

where taking into account the suppositions: 
𝜕𝜇𝐴

𝜕𝐶𝐴,𝑀
=

𝜕ln (𝛾∙𝐶𝐴,𝑀)

𝜕𝐶𝐴,𝑀
=

𝑅𝑇

𝐶𝐴,𝑀
. 

Let us present the estimated relation for the local dissipation and cal-

culate its value for given boundary conditions (𝑥 = 0, 𝑥 = 𝛿): 

𝛹̇𝑉 = 𝑅𝑇 [𝐷𝐴,𝑀 (
𝜕𝐶𝐴,𝑀

𝜕𝑥
)

2 1

𝐶𝐴,𝑀
+ 𝐷𝐵,𝑀 (

𝜕𝐶𝐵,𝑀

𝜕𝑥
)

2 1

𝐶𝐵,𝑀
] 

𝛹̇𝑥=0
𝑉 = 8,314 ∙ 279 ∙ [5,558 ∙ 10−10 ∙ (−7,784 ∙ 104)2 ∙

1

23,951 ∙ 10−3
+ 

+1,433 ∙ 10−9 ∙ (−0,1545 ∙ 104)2 ∙
1

0,3174 ∙ 10−3] = 3,51 ∙ 105
kW

𝑚3  

𝛹̇𝑥=𝛿
𝑉 = 8,314 ∙ 279 ∙ [5,558 ∙ 10−10 ∙ (−7,784 ∙ 104)2 ∙

1

8,3837 ∙ 10−3 + 

+1,433 ∙ 10−9 ∙ (−0,1545 ∙ 104)2 ∙
1

0,00841 ∙ 10−3] = 18,7525 ∙ 105
kW

m3  



 The local dissipation of the convertible Gibbs energy is proportional 

to the square of the moving force and inversely proportional to the local 

concentration of components; so, the maximum value 𝛹̇𝑉 corresponds to 

the membrane areas that border the drain cavity. 

 The integral value of the dissipative function per unit of the mem-

brane area is defined by integrating its local value over 𝑥 coordinate: 

𝛹̇𝛿=1𝑚2 = ∫ 𝛹̇𝑉𝑑𝑥
𝛿

0

 

 For planar geometry the linear distribution of the concentration of 

components in the membrane obeys the expression: 

𝐶𝑗,𝑀 = 𝐶𝐽,𝑀(𝑥 = 0) + 𝑏𝑥𝐽 , where 𝑏 =
𝜕𝐶𝑗

𝜕𝑥
= 𝑐𝑜𝑛𝑠𝑡.  

The diffusion membrane is used to separate components that are similar in 

nature and structure, but differ in the shape and size of the molecules [3]. 

 

The integral value of the convertible energy dissipation while going 

through the membrane with the contact area 𝐴 = 117 𝑚2 is defined by in-

tegrating 𝛹̇𝛿=1 𝑚2 over all working area: 

𝛹̇𝑉 = ∫ 𝛹̇𝛿=1𝑚2𝑑𝐴
𝐴

0

= 0,1239 ∙ 117 = 14,5 𝑘𝑊 

 The article is devoted to the diffusion in a binary gas system that 

obeys Fick's law: the intensity of mass transfer of a separate component is 

proportional to its concentration gradient and does not depend on potentials 

of other intensive system properties. Often such limitations in terms of ap-

plication are justified, despite the fact that engineering applications of dif-

fusion phenomena, particularly in gas systems, are quite diverse, so they 

need to be considered in connection with the convection mechanisms of 

heat and mass transfer on a case-by-case basis. 
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