

III International Scientific Conference "Sustainable and efficient use ГАЛАХИМ of energy, water and natural resources – SEWAN-2021"

Analytical estimation of MSW-derived fuel calorific value

Authors: Ms Polina Barbanel, Ms Polina Agakhaniants

Affiliations: ITMO University

Saint-Petersburg, April 19-24, 2021

Research Objective:

The purpose of this work is to study an analytical method for estimation energy potential of **MSW-derived fuel**. The aim was to calculate the MSW sample's calorific value by means of existing regressions based on waste composition.

Sample composition	% mass (dry basis)	% (wet basis)
Food	21,7	14,32
Paper / carbord	1,2	0,79
Wood	18,6	12,28
Textile	17,7	11,68
Leather / rubber	23,7	15,58
Plastics	4,4	2,9
Composite materials	8,4	5,54
Other	1,7	1,12
Glass / stones	2,6	1,72
Moisture (wet basis)	0	34,06
Calorific value (laboratory results)	13550 kJ / kg	

Table 1 – Composition of the sample

III International Scientific Conference on "Sustainable and Efficient Use of Energy, Water and Natural Resources"

Analytical estimation of MSW fuel calorific value

Names: Ms Polina Barbanel, Ms Polina Agakhaniants Affiliations ITMO University

Keywords:

MSW, RDF, calorific value

Results

Table 2 – Results of the sample approbation

Regression	Composition	Results of calculation, kJ/kg	Percentage error, %
Asturias (Spain) [4]	morphological	8883,05	34,44
Tokyo [5]	morphological	6616,05	51,17
Ali Khan [5]	morphological	7796,96	42,46
Eq 1 [5]	morphological	7654,99	43,51
Eq 6 [5]	morphological	7693,37	43,22
Eq 3 [5]	morphological	10715,21	20,92
(Content of component) x (calorific value of the component) International data	morphological	10825,64	20,11
(Content of component) x (calorific value of the component) Russian data	morphological	19277,60	-42,27
Steuer [5]	ultimate	12750,16	5,90
Scheuerer-Kestner [5]	ultimate	18386,79	-35,70

Conclusions

Regressions presented in articles [4, 5] based on morphological composition do not show a close convergence to the experimental value; the experimental calorific value was 13.55 MJ/kg, the values according to the presented formulas vary from 6.62 to 10.83 MJ/kg.

Regressions based on the ultimate composition show ambiguous results. One regression presents the value relatively close to the laboratory analysis while second regression does not prove to be reliable for calculations.

Further search for analytical methods has the aim to identify an equation for reliable estimations. The expanded experimental data is needed.

References

- 1. Budko A.G., Vniim F., Mendeleeva D.I. // Solid household waste. 2015. № 4. P. 38–41.
- 2. Electronic fund of legal and regulatory technical documentation: GOST 33516-2015 (EN 15359: 2011). Solid recovered fuel. Specifications and classes [viewed December 7, 2020]. Available from: <u>http://docs.cntd.ru/document/1200126393.</u>
- 3. Electronic fund of legal and regulatory technical documentation: GOST 33108-2014 (EN 15400: 2011). Solid recovered fuel. Determination of calorific value [viewed December 7, 2020]. Available from: <u>http://docs.cntd.ru/document/1200120566.</u>
- 4. Ilinykh G.V. // PNRPU vestnik. Urban studies. 2013. № 3.P. 125-137.
- 5. Kathiravale S., Yunus M.N.M., Sopian K., Samsuddin A.H., Rahman R.A. // Fuel. 2003. V. 11. № 9. P. 1119–1125.

Acknowledgement

Authors would like to acknowledge Institute of Environmental Design and Hygiene for sharing valuable information related to the MSW sample.

Names: Ms Polina Barbanel, Ms Polina Agakhaniant Affiliations ITMO University

Keywords:

MSW, RDF, calorific value

Thank you for your attention!

Authors: Ms Polina Barbanel, Ms Polina Agakhaniants Affiliations: ITMO University

Contact details: <u>barbanelpolina@mail.ru</u>, <u>aga-polina@yandex.ru</u>