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The article discusses methods for solving applied problems of electrodynamics in the case of 

layered and vertically inhomogeneous media. Algorithms for the primary processing of GPR 

data are proposed. The readings of a georadar at a fixed observation point were investigated 

using the "selection" method. The analysis of the frequency response of the signal energy 

distribution by frequency components is carried out. A software implementation for determining 

the depth of objects and the relative permittivity of the subsurface medium is proposed. To solve 

this problem, a module for determining the depth and conductivity of subsurface objects is used. 

The computational part was carried out by the method of an approximate solution that is 

widespread in computational practice. As a result of the study, numerical methods have been 

developed for solving direct problems of electrodynamics. 

Keywords:electromagnetic disturbance, class of functions, physical fields, numerical 
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Introduction. The actual and urgent need to use analytical and numerical methods for studying 

problems of electrodynamics determine the need to consider them in the case of layered and 

vertically inhomogeneous media. The original problem of electrodynamics, in the case of a 

special choice of the source of electromagnetic disturbance, is reduced to a series of one-

dimensional problems for the geoelectric equation. Based on the "fit" method, fixed 

measurement points for a class of calculated physical fields determine a class of functions that 

describe the response of the medium. 

To solve such applied problems, it is necessary to have a dependence of the signal amplitude on 

the depth of its reflection, and the initial radarogram will express the dependence of the signal 

amplitude on the reflection time. Then it is necessary to get rid of various noise hiding the useful 

signal. 

Purpose of the work: For this purpose, algorithms for reducing the noise level in the radarogram 

using various wavelets should be considered. Used: Haar wavelet and Daubechies 4 -order 

wavelets. The main field of application of wavelet transforms is the analysis and processing of 

signals and functions that are nonstationary in time and inhomogeneous in space. The results of 

such an analysis should contain the frequency response of the signal, the distribution of the 

signal energy over the frequency components. Compared to the decomposition of signals into 

Fourier series, wavelets are capable of representing local features of signals with a higher 

accuracy [1]. 

Main results. As a result of studying the subsurface environment, we will receive a lot of signals 

received from the receiving antenna for each measurement by the GPR. Many such traces are 

visualized using the variable density method as an image. Automation of computational 
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processes should be implemented on the basis of a software module, which will allow 

determining the depths of objects and the relative dielectric constant of the subsurface medium. 

The location of the subsurface object is determined by the top of the hyperbola, which is 

constructed according to the points of the maximum values of the amplitudes of each trace [2]. 

To implement the set tasks, an algorithm is being developed to interpret the GPR data to 

determine the dielectric constant and conductivity of the medium. For this purpose, two practical 

inverse problems have been solved. At the beginning, the parameters of the source generated by 

the GPR are determined. According to a known source, the relative permittivity and conductivity 

of the medium are found. The tasks are solved on well-known environments that were specially 

prepared at the test site. For the first problem, a homogeneous medium was created, for the 

second - a local inhomogeneity located in a horizontally layered homogeneous medium. For the 

second task, a software module for determining the depth and conductivity of subsurface objects 

is described [3]. 

Experimental studies were carried out on a test site with a geological section containing perfectly 

clean sand and an inhomogeneous inclusion "salt dome" of artificial origin. The numerical 

algorithm allows one to determine the secondary source excited by a non-uniform inclusion and, 

subsequently, to determine the dielectric constant of this inclusion. The response of the 

environment, received from the GPR, was cleaned of noise and interference using filtering 

algorithms and wavelets. The tabular presentation of the environment response was used as 

additional information to solve the inverse problem of determining the geophysical properties of 

a localized object. 

The results obtained demonstrate both the adequacy of the mathematical model and the 

possibility of practical application of the method under consideration for the interpretation of 

radarograms. 

The original problem of electrodynamics, in the case of a special choice of the source of 

electromagnetic disturbance, is reduced to a series of one-dimensional problems for the 

geoelectrics equation [4]. Vertically inhomogeneous media are considered by us as cases of 

inclined media, as well as combinations of inclined and layered media, i.e. continuous (smoothed 

media) are considered. For such a case, there are no discontinuities in the coefficients of the 

physical characteristics of the media, which, in the case of discontinuities, lead to certain 

difficulties in constructing an algorithm for solving a straight line and, moreover, algorithms for 

solving inverse problems, in the latter case, in constructing a gradient of the residual functional. 

On the basis of the "fitting" method, the fixed measurement points for the class of calculated 

physical fields are determined by the class of functions that describe the response of the medium 

[5]. From the condition of the minimum square deviation of the observed field (GPR data at a 

fixed point) and the calculated physical field, by virtue of the uniqueness theorem, we obtain the 

required structure of the medium corresponding to the GPR data. 

Consider an algorithm for a numerical method for solving the problem of electrodynamics in a 

layered medium. The "selection" method is a common method in computing practice for the 

approximate solution of an equation of the form: 

uAz  , ,Uvu ,Fz where FU , aremetricspaces. 

When using this method, given a sufficiently wide class of possible media, the corresponding 

calculated physical fields are calculated and, as a solution to the problem, some possible 

structure of the medium is selected for which the calculated physical field differs little from the 



observed field. An operator Az  is calculated for an element z  of some predetermined subclass 

of possible solutions )( FMM  , i.e. the direct problem is being solved. An element 0z  from the 

set ,M  on which the residual ),(inf),( 0 uAz
Mz
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approximate solution [6]. In our case, the “selection” method is implemented as follows: let  
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discrepancy is the response of the environment, from where the environment from the class of 

media is determined 
jM , thereby solving the problem of interpreting the GPR data. 

A set of algorithm solution data was created to construct a class of possible calculated physical 

fields for a set of geological section models in the case of layered media. Here are the ways of 

forming a class of possible structures of media, as shown in Figures 1-3. 

 

Figure 1 - Variations in depth of layer thickness 

 

Figure 2 - Variations in the parameter-dielectric constant 



 

Figure 3 - Variations in the parameter-conductivity of the medium 

By varying the main characteristics of the media (dielectric constant, conductivity of media, 

layer powers), a fairly wide class of possible media was created. Next, a series of direct problems 

were solved for each class of possible media structures. 

For clarity of reasoning, we present the formulation of the direct problem of electrodynamics, 

which consists in the following: on the day surface, an external current source 
cmj  is switched 

on, which has a bell-shaped form in time r(t) . During about 30-50 nanoseconds, the response of 

the medium is measured, which is the solution of the direct problem at the point of observation 

(measurement). 

We assume that the dielectric constant   and conductivity   depend on the depth 3x . Let us 

choose as a source of external current a sufficiently long cable located in the center and stretched 

along the axis 2x . 

Under such assumptions, the system of Maxwell's equations is reduced to a system of one-

dimensional problems in the constructed class and satisfies the following equations: 
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Consider the case of a layered medium with known interfaces. In this case, we add to system (1) 

and (2), the continuity conditions for the horizontal component 2E , at the interfaces mx3  

  ,0
33

)(  mxx

kV   mV mxx

k

x ,0
33

3

)( 


 - break node number   (3) 

Formulation of the direct problem: Using the known values of piecewise constant 

functions    3
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to the generalized Cauchy problem from relations (1) and (3). When using the 
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Here we carry out a variation in the thickness of the media layers and
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. 

Let us present a numerical algorithm for solving the direct problem, constructed according to the 

general theory of difference schemes [7]. 

We introduce a change of variables t  ,   - the dimensionlessness coefficient. Suppose 

that
810 , then the solution to the problem in new variables ( 3, x ), :U  will take the form: 
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Let us determine the size of the area of calculations by the variables 3x , and . For this purpose, 

we calculate the travel times of the direct and reflected waves in the media. We calculate the 

wave velocity by layers as follows: 
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The difference scheme for equation (4) has the form: 
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A difference analogue of the initial conditions (5): 
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For calculations in a finite region, it follows from condition (6) that: 
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Resolving equation (7) with respect to, we have: 
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Let's approximate the source     '

3 rxq . Let's put: 
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The values 0t  are determined from the condition of the problem, i.e. if the source duration is 2нс, 

then for a real model нсt 22 0  and in dimensionless form it will be 0.2 units. In our case, the 

Courant conditions have the form: 
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The area in time  is approximated by a uniform mesh: 
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waves. We approximate the region in terms of a variable 3x  with a non-uniform mesh so that the 
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To demonstrate the operation of algorithms (7) and (12), Figure 4 shows the numerical solution 

of direct problems for a possible structure of a layered medium. 

 

a) signal propagation  b) medium response in a layered medium 

Figure 4 - Numerical solution of direct problems for a possible 

layered media structures 

Conclusion. The obtained GPR readings at a fixed observation point using the "fit" method were 

compared with the class of possible structures, created for more than 10,000 variants. Thus, the 

interpretation of the radarograms was carried out. Figures 6 and 7 clearly show the operation of 

this algorithm.Figure 6 shows the solution of the direct problem for the possible structure of a 

layered medium with a thick black line, a thin black line shows the readings of the GPR at a 

fixed observation point, obtained on 5002 iterations of the "selection" method. A similar result 

obtained for 6752 iterations is shown in Figure 7. 

 

Figure 6 - The result of the "selection" method for the case of layered media 

 

Figure 7 - Result of the "selection" method for the case of layered media 



As a result of the study, numerical methods have been developed for solving direct problems of 

electrodynamics (layered media). Algorithms and a program of numerical methods for solving 

direct problems of electrodynamics have been developed. To compare the GPR data with the 

results of calculations of model problems for the geoelectric equation in the case of layered 

media, the “selection” method was used. In the class of finite-parametric media, an algorithm 

and software are built to determine the class of computed physical fields. Further, comparing the 

measurement data with this class, we reconstruct the geological section. 
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