Speakers
Description
Graphene and other carbon-based nanomaterials are expected to make breakthroughs in new technologies.1 Particularly, graphene oxide (GO) allow a new range of applications including robotics, sensors, wearables, power generation, electronics, catalysis, and chemical protection. However, GO is typically obtained by using strong acids and oxidizing agents that compromise graphene exceptional properties. In addition to explosion risks and high-toxicity, conventional chemical methods involve the degradation of the graphene properties. In this contribution, as an alternative to GO, we propose a new method for developing energy-efficient and environmentally friendly graphene-based laser-irradiated flexible electronics. Our graphene material has all the advantages of GO such as water dispersibility, and even more, the electrical conductivity can be tuned as a function of laser irradiation processing.2 The exfoliation of graphite with the formation of modified graphene sheets is followed by the laser-beam irradiation that result in increased electrical conductivity due to the photochemical and photothermal elimination of aryl groups. This photonic processing is much cleaner than the conventional chemical method and more energy-efficient than the thermal annealing method conventionally used to reduce graphene oxide. As proof-of-concept, we demonstrate this novel, green, and energy-efficient technology for the development of flexible devices including temperature, pressure, and chemical sensors.
- Wang, S.; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z. Acc. Chem. Res. 2018, 51 (5), 1033–1045.
- Rodriguez, R. D.; Murastov, G. V.; Lipovka, A.; Fatkullin, M. I.; Nozdrina, O.; Pavlov, S. K.; Postnikov, P. S.; Chehimi, M. M.; Chen, J.-J.; Sheremet, E. Carbon. 2019.
Affiliation of speaker | Tomsk Polytechnic University |
---|---|
Publication | Журнал «ХХI век. Техносферная безопасность» |
Position of speaker | Professor |